Abstract

Levels of botulinum neurotoxin (BoNT) proteolytic activity were compared using a cell-free assay and living neurons to measure extracellular and intracellular enzymatic activity. Within the cell-free reaction model, BoNT serotypes A and E (BoNT/A and BoNT/E, respectively) were reversibly inhibited by chelating Zn2+ with N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN). BoNT/E required relatively long incubation with TPEN to achieve total inhibition, whereas BoNT/A was inhibited immediately upon mixing. When naïve Zn2+-containing BoNTs were applied to cultured neurons, the cellular action of each BoNT was rapidly inhibited by subsequent addition of TPEN, which is membrane permeable. Excess Zn2+ added to the culture medium several hours after poisoning fully restored intracellular toxin activity. Unlike TPEN, EDTA irreversibly inhibited both BoNT/A and -E within the cell-free in vitro reaction. Excess Zn2+ did not reactivate the EDTA-treated toxins. However, application of EDTA-treated BoNT/A or -E to cultured neurons demonstrated normal toxin action in terms of both blocking neurotransmission and SNAP-25 proteolysis. Different concentrations of EDTA produced toxin preparations with incrementally reduced in vitro proteolytic activities, which, when applied to living neurons showed undiminished cellular potency. This suggests that EDTA renders the BoNT proteolytic domain conformationally inactive when tested with the cell-free reaction, but this change is corrected during entry into neurons. The effect of EDTA is unrelated to Zn2+ because TPEN could be applied to living cells before or after poisoning to produce rapid and reversible inhibition of both BoNTs. Therefore, bound Zn2+ is not required for toxin entry into neurons, and removal of Zn2+ from cytosolic BoNTs does not irreversibly alter toxin structure or function. We conclude that EDTA directly alters both BoNTs in a manner that is independent of Zn2+.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.