Abstract

The accuracy attained in theoretically estimating the yields of isotopes and isobars and their energy, charge, and mass distributions in silicon fragmentation that occurs in spacecraft electronics under the effect of cosmic-ray protons is an important factor in forecasting the probability for single-event upsets in the electronics and the reliability of spacecraft operation in general. In previous studies of our group, it was shown that the results of the calculations are highly sensitive to the choice of parameters for opticalmodel potentials. In addition to cross sections for elastic and inelastic proton scattering and charge, mass, and energy distributions of heavy nuclear-reaction products, the results of our calculations for doubledifferential spectra of protons originating from the interaction of highly energetic (30–400 MeV) protons with aluminum and double-differential spectra of other particles (neutrons and alpha particles) arising in competing channels of the p + 27Al reaction are also described in the present article. The calculations in question were performed on the basis of the EMPIRE-II-19 code by using various optical-model potentials, including the Becchetti-Greenlees potential for the (p, n) channel, the Wilmore-Hodgson potential for the (p, n) channel, the Madland potential for the (p, p) channel, the Koning-Delaroche potential for the (p, p) channel, and the McFadden-Satchler potential for the (p, α) channel. A comparative analysis of the double-differential spectra obtained for outgoing protons, neutrons, and alpha particles experimentally and in the calculations of various authors was performed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call