Abstract

To understand the dynamics of H3O(+) formation, we report a combined experimental-theoretical study of the rovibrationally state-selected ion-molecule reactions H2O(+)(X(2)B1; v1(+)v2(+)v3(+); NKa(+)Kc(+)(+)) + H2 (D2) → H3O(+) (H2DO(+)) + H (D), where (v1(+)v2(+)v3(+)) = (000), (020), and (100) and NKa(+)Kc(+)(+) = 000, 111, and 211. Both quantum dynamics and quasi-classical trajectory calculations were carried out on an accurate full-dimensional ab initio global potential energy surface, which involves nine degrees of freedom. The theoretical results are in good agreement with experimental measurements of the initial state specific integral cross-sections for the formation of H3O(+) (H2DO(+)) and thus provide valuable insights into the surprising rotational enhancement and vibrational inhibition effects in these prototypical ion-molecule reactions that play a key role in the interstellar generation of OH and H2O species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.