Abstract

The aim of this study is to investigate the effects of the fuel temperature and the ambient gas temperature on the overall spray characteristics. Also, based on the experimental results, a numerical study is performed at more detailed and critical conditions in a high pressure diesel spray using a computational fluid dynamics (CFD) code (AVL, FIRE ver. 2008). Spray tip penetration and spray cone angle are experimentally measured from spray images obtained using a spray visualization system composed of a high speed camera and fuel supply system. To calculate and predict the high pressure diesel spray behavior and atomization characteristics, a hybrid breakup model combining KH (Kelvin-Helmholtz) and RT (Rayleigh-Taylor) breakup theories is used. It was found that an increase in fuel temperature induces a decrease in spray tip penetration due to a reduction in the spray momentum. The increase of the ambient gas temperature causes the increase of the spray tip penetration, and the reduction of the spray cone angle. In calculation, when the ambient gas temperature increases above the boiling point, the overall SMD shows the increasing trend. Above the boiling temperature, the diesel droplets rapidly evaporate immediately after the injection from calculation results. From results and discussions, the KH-RT hybrid breakup model well describes the effects of the fuel temperature and ambient gas temperature on the overall spray characteristics, although there is a partial difference between the experimental and the calculation results of the spray tip penetration by the secondary breakup model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.