Abstract
This study aimed to investigate the differences between the exosomal microRNA-127-5p expression profiles of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) and human synovial fluid-derived mesenchymal stem cells (hSF-MSCs) during chondrogenesis in terms of regenerative treatment of cartilage. Synovial fluid-derived mesenchymal stem cells, adipose tissue-derived mesenchymal stem cells, and human fetal chondroblast cells (hfCCs) were directed to chondrogenic differentiation. Alcian Blue and Safranin O stainings were performed to detect chondrogenic differentiation histochemically. Exosomes derived from chondrogenic differentiated cells and their exosomes were isolated and characterized. microRNA-127-5p expressions were measured by Quantitative reverse transcription PCR (qRT-PCR). Significantly higher levels of microRNA-127-5p expression in differentiated hAT-MSCs exosomes, similar to human fetal chondroblast cells, which are the control group in the chondrogenic differentiation process, were observed. hAT-MSCs are better sources of microRNA-127-5p than hSF-MSCs for stimulating chondrogenesis or in the regenerative therapy of cartilage-related pathologies. hAT-MSCs exosomes are rich sources of microRNA-127-5p and can be an essential candidate for cartilage regeneration treatments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.