Abstract

Since energy sources are limited, any activity aimed at recycling energy waste or facilitating energy conversion systems is invaluable. Against this background, most scientists focus on the integration of energy systems and the coupling of different technologies. In this study, a variety of power systems are investigated for optimal power conversion configurations of geothermal sources. Three configurations, Organic Rankine Cycle Geothermal Cooling (GPR/ORC), Kalina Cycle Geothermal Cooling (GPR/Kalina), and Rankine Cycle and Feed water Heater (GPR/FWH) Geothermal Cooling, are classified according to exergy and Study energy economic analysis. Calculations show that the GPR/FWH system has the highest net output power of 2963 kW. In addition, the GPR/Kalina system has the lowest output power and lowest energy efficiency among the systems launched. Across the three proposed systems, the fuel cell generates 1254 kW of electricity, while the Kalina cycle in the GPR/Kalina system generates 487 kW. Exergy studies show that the GPR/Kalina and GPR/FWH systems have the lowest and highest irreversibility (3795.4 kW and 4365.56 kW, respectively). Furthermore, the fuel cell was found to have the greatest exergy destruction rate among the three configurations. The results of the economic analysis show that the fuel cell has the highest cost ratio among all designs. In addition, the values of the dissipation factor show that the absorption chiller has the highest dissipation factor value among the three configurations. Furthermore, the comparative parametric analysis provides new aspects to introduce into the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.