Abstract
We consider a steady state problem for heat transfer in fins of various geometries, namely, rectangular, radial, and spherical. The nonlinear steady state problem is linearizable provided that the thermal conductivity is the differential consequence of the term involving the heat transfer coefficient. As such, one is able to construct exact solutions. On the other hand, we employ the Lie point symmetry methods when the problem is not linearizable. Some interesting results are obtained and analyzed. The effects of the parameters such as thermogeometric fin parameter and the exponent on temperature are studied. Furthermore, fin efficiency and heat flux along the fin length of a spherical geometry are also studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.