Abstract

The escape depths of the characteristic electrons of the Auger electron and the quasielastically reflected electron were determined by Auger electron spectroscopy (AES) and disappearance potential spectroscopy (DAPS), respectively, for a Cr overlayer onto Ti and Fe substrates. For the case of Cr on Fe, in-situ measurements of AES and DAPS were carried out. From the results, the mean free paths of 455, 575 and 710 eV electrons through Cr were obtained as 9.6, 13 and 15 Å, respectively. The attenuation length of a 2.5 keV primary electron of AES through Cr was also obtained and the value was 62 Å. In addition, the mean free paths of electrons with the same energy depend on the scattering materials of Cr, Mo and W (material dependence). The phenomena are useful for a quantitative electron spectroscopy of surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.