Abstract

The use of renewable energy sources (RES) such as wind and solar power is increasing rapidly to meet growing electricity demand. However, the intermittent nature of RES poses a challenge to grid stability. Energy storage (ES) technologies offer a solution by adding flexibility to the system. With the emergence of distributed energy resources (DERs) and the transition to prosumer-based electricity systems, energy management systems (EMSs) have become crucial to coordinate the operation of different devices and optimize system efficiency and functionality. This paper presents an EMS for a residential photovoltaic (PV) and battery system that addresses two different functionalities: energy cost minimization, and self-consumption maximization. The proposed EMS takes into account the operational requirements of the devices and their lower-level controllers. A genetic algorithm (GA) is used to solve the optimization problems, ensuring a desired State of Charge (SOC) at the end of the day based on the next day forecast, without discretizing the SOC transitions allowing a continuous search space. The importance of adhering to the manufacturer’s operating specification to avoid premature battery degradation is highlighted, and a comparative analysis is performed with a simple tariff-driven solution, evaluating total cost, energy exchange, and peak power. Tests are carried out in a detailed model, where Power Electronics Converters (PECs) and their local controllers are considered together with the EMS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call