Abstract

The Finnish forest industry is committed to applying novel technologies for increasing carbon-neutral development and environmental sustainability in “green” circular industry. This study compares the energy efficiency indicators of road freight transportation. Additionally, effects of four mass limits of vehicle combinations are analyzed after a three-year adaptation process that took place in a wood procurement region of 100% renewable resources. The wood-based energy efficiency model (load’s wood energy/fossil transport energy) was the most accurate and precise measure as the development indicator. The indicator showed that the transportation systems (60, 64, 68, and 76 t) and (64, 68, and 76 t) were carbon negative (122, 133, 144, and 108) (142, 147, and 133) in 2014 and 2016, respectively. The numbers reveal positive energy ratio of renewable wood and fossil fuels. In comparison to 60 t, the use of 68 t vehicles increased energy efficiency most effectively in the systems, by 18.0% and 20.5%, respectively. The indicator robustly revealed the energy efficiency of a partial system in the smaller supply region, which depended on the region’s transportation conditions. This novel knowledge can be applied for advancing the adaptation toward carbon-neutral supply networks. There is also the development potential of an industrial ecosystem model for optimizing the environmental sustainability of “green” circular industry.

Highlights

  • The energy efficiency models of synchronized transportation system (STS) were tested for improving the environmental sustainability of road freight transportation

  • This study developed energy efficiency indicators for carbon-neutral transportation

  • The indicator showed that fleets of synchronized transportation system (60, 64, 68, and 76 t) and (64, 68, and 76 t) were carbon negative (122, 133, 144, and 108) (142, 147, and 133) in 2014 and 2016, respectively

Read more

Summary

Introduction

Decarbonizing Technologies of Transportation in Green Circular Economy. Scientists and governments around the world are making great efforts to reach the zero-carbon emission level in green circular economies [1]. Current research can identify promising carbon-negative technologies of renewable raw materials with carbon capture and sequestration as strategies for long-term climate change mitigation [2,3]. Thereby, the European Commission seeks efficient solutions to target Europe to consume less fossil energy. To reach greenhouse gas reductions and a low-carbon economy [4], the suggested steps are to reach a 40% cut by 2030 and a 60% cut by 2040 [5]. The EU has even agreed to carbon neutrality by 2050

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.