Abstract
Urban particulate matter (SRM 1648), Buffalo River sediment (SRM 2704) and pine needle (SRM 1575) standard reference materials prepared by the National Institute of Standards and Technology (NIST, USA) were analyzed by three multi-element analysis methods, i.e., particle induced X-ray emission (PIXE), inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES); values determined by those analysis methods were compared with certified and/or non-certified values of NIST samples. Values determined by PIXE were 70–120% relative to certified and/or non-certified values of NIST samples except for Co in the urban particulate matter, for V and Co in Buffalo River sediment and for Ni and Br in the pine needles samples. In particular, Al, K, Ca, Cr, Mn, Fe, Cu, Zn and Pb were 85–110% in all samples. On the other hand, Na and Fe values determined by ICP-MS were very much different from the certified values in all samples, but the other elements were 70–120%. As for ICP-AES, all elements except for Na were 80–100% in all samples. Comparing the values determined by PIXE and those determined by ICP-MS and/or ICP-AES, there was a slight difference between the samples, but the range was 75–120% except for Na, V, Fe and Co determined by ICP-MS and Na determined by ICP-AES, which was generally consistent with PIXE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.