Abstract

Research advances in electropolishing, with respect to the field of metalworking, have afforded significant improvements in the surface roughness and conductivity properties of aluminum polished surfaces in ways that machine polishing and simple chemical polishing cannot. The effects of a deep eutectic medium as an acid-free electrolyte were tested to determine the potential energy thresholds during electropolishing treatments based upon temperature, experiment duration, current, and voltage. Using voltammetry and chronoamperometry tests during electropolishing to supplement representative recordings via atomic force microscopy (AFM), surface morphology comparisons were performed regarding the electropolishing efficiency of phosphoric acid and acid-free ionic liquid treatments for aluminum. This eco-friendly solution produced polished surfaces superior to those surfaces treated with industry standard acid electrochemistry treatments of 1 M phosphoric acid. The roughness average of the as-received sample became 6.11 times smoother, improving from 159 nm to 26 nm when electropolished with the deep eutectic solvent. This result was accompanied by a mass loss of 0.039 g and a 7.2 µm change in step height along the edge of the electropolishing interface, whereas the acid treatment resulted in a slight improvement in surface roughness, becoming 1.63 times smoother with an average post-electropolishing roughness of 97.7 nm, yielding a mass loss of 0.0458 g and a step height of 8.1 µm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.