Abstract

Electron capture dissociation (ECD) in Fourier transform ion cyclotron resonance mass spectrometry coupled with electrospray ionization enhances the sequence elucidation of peptide nucleic acids compared with conventional low-energy collisionally activated dissociation (CAD). Examples are shown where ECD produced complete or extensive sequence coverage in PNAs six to ten nucleobases long. However, facile base losses from the reduced species and low abundances of backbone ECD fragments presented a significant problem. This was rationalized through the lower degree of charge solvation on the backbone compared to polypeptides. Combination of both CAD and ECD data is advantageous, as these techniques produce cleavages at different sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.