Abstract
Comparative study is presented to the effect of the electron-beam misalignment on the starting current and output power of the coaxial-cavity and cylindrical-cavity gyrotron oscillators operating in the millimeter wave ranges. The numerical analysis is based on the gyrokinetic formulas for a TE28,16,1 mode at a frequency of 140 GHz. Results show that the coaxial-cavity gyrotron oscillator has lower starting current and less power loss than the cylindrical-cavity gyrotron oscillator when the electron-beam axis has a misalignment to the cavity axis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Infrared and Millimeter Waves
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.