Abstract
A gas chromatographic–mass spectrometric method (GC–MS) for the simultaneous determination of the ‘new’ antidepressants (mirtazapine, viloxazine, venlafaxine, trazodone, citalopram, mianserin, reboxetine, fluoxetine, fluvoxamine, sertraline, maprotiline, melitracen, paroxetine) and their active metabolites (desmethylmirtazapine, O-desmethylvenlafaxine, m-chlorophenylpiperazine, desmethylcitalopram, didesmethylcitalopram, desmethylmianserin, desmethylfluoxetine, desmethylsertraline, desmethylmaprotiline) in plasma using different ionization modes was developed and validated. Sample preparation consisted of a strong cation exchange mechanism and derivatisation with heptafluorobutyrylimidazole. The GC separation was performed in 24.8 min. Identification and quantification were based on selected ion monitoring in electron (EI) and chemical ionization (CI) modes. Calibration by linear and quadratic regression for electron and chemical ionization, respectively, utilized deuterated internal standards and a weighing factor 1/ x 2. Limits of quantitation were established between 5 and 12.5 ng/ml in EI and positive ionization CI (PICI), and 1 and 6.25 ng/ml in negative ionization CI (NICI). During validation stability, sensitivity, precision, accuracy, recovery, and selectivity were evaluated for each ionization mode and were demonstrated to be acceptable for most compounds. While it is clear that not all compounds can be quantitated either due to chromatographic (trazodone) or derivatisation problems ( O-desmethylvenlafaxine), this method can quantitate most new antidepressants (ADs) in the therapeutic range using EI. PICI and NICI lead to higher selectivity. Moreover, NICI is of interest for small sample volumes and high sensitivity requirements. This paper draws the attention to the pros and cons of the different ionization modes in the GC–MS analysis of these antidepressants in plasma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.