Abstract

Fostriecin causes a delayed inhibition of replicative DNA synthesis in human cells, consistent with a role for DNA topoisomerase II (its target enzyme) at a late stage in replication. Fostriecin does not inhibit UV-induced excision repair. The less specific inhibitor novobiocin blocks repair in permeabilised cells given a low dose of UV, presumably through a mechanism other than the inhibition of topoisomerase II. Its effect cannot be accounted for by a depletion of the ATP required for incision. Camptothecin, an inhibitor of DNA topoisomerase I, blocks replicative DNA synthesis immediately but incompletely, suggesting a participation of topoisomerase I at the replication fork, but it, too, has no influence on DNA repair. We thus find no evidence for involvement of either topoisomerase I or II in the response of cells to UV damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.