Abstract

The information value (IV) model is a conventional method for landslide susceptibility prediction (LSP). However, it is inconsistent with the actual situation to regard all conditioning factors as equally weighted in the modeling process. In view of this, this paper studied the optimization effect of different weight calculation methods for IV model. Xingshan County, a typical landslide-prone area located in Hubei Province, China, was taken as a case study. The procedure was as follows: First, six conditioning factors, including elevation, slope angle, aspect, curvature, distance to river, and distance to road, were selected to form an evaluation factor library for analyzing the landslide susceptibility. Then, the weight of factors was calculated by fuzzy analytical hierarchy process (FAHP) and principal component analysis (PCA). On this basis, combined with the IV model, two weighted IV models (FAHP-IV model and PCA-IV model) were formed for LSP. The results shows that the optimization effect of PCA was the best. Moreover, compared with the IV-only model (AUC = 0.71), the FAHP-IV model (AUC = 0.76) and PCA-IV model (AUC = 0.79) performed better. The outcome also provided a feasible way for the study of regional LSP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call