Abstract

Realizing a sustainable development of our planet requires a reduction of waste production, harmful emissions, and higher energy efficiency as well as utilization of renewable energy sources. One pathway to this end is the design of sustainable biorefinery concepts. Utilizing waste streams as raw material is gaining great importance in this respect. This reduces environmental burden and may at the same time contribute to economic performance of biorefineries. This paper investigates the utilization of slaughtering waste to produce biodegradable polyesters, polyhydroxyalkanoates (PHA), via bioconversion. PHA are the target product while production of high quality biodiesel along with meat and bone meal (MBM) as by-products improves the economic performance of the process. The paper focuses on ecological comparison of different production scenarios and the effect of geographical location of production plants taking different energy production technologies and resources into account; ecological footprint evaluation using Sustainable Process Index methodology was applied. Keeping in mind that the carbon source for PHA production is produced from waste by energy intensive rendering process, the effect of available energy mixes in different countries becomes significant. Ecological footprint results from the current study show a bandwidth from 372,950 to 956,060 m2/t PHA production, depending on the energy mix used in the process which is compared to 2,508,409 m2/t for low density polyethylene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.