Abstract

Assessment of fluid responsiveness relies on dynamic echocardiographic parameters that have not yet been compared in large cohorts. To determine the diagnostic accuracy of dynamic parameters used to predict fluid responsiveness in ventilated patients with a circulatory failure of any cause. In this multicenter prospective study, respiratory variations of superior vena cava diameter (∆SVC) measured using transesophageal echocardiography, of inferior vena cava diameter (∆IVC) measured using transthoracic echocardiography, of the maximal Doppler velocity in left ventricular outflow tract (∆VmaxAo) measured using either approach, and pulse pressure variations (∆PP) were recorded with the patient in the semirecumbent position. In each patient, a passive leg raise was performed and an increase of aortic velocity time integral greater than or equal to 10% defined fluid responsiveness. Among 540 patients (379 men; age, 65 ± 13 yr; Simplified Acute Physiological Score II, 59 ± 18; Sequential Organ Failure Assessment, 10 ± 3), 229 exhibited fluid responsiveness (42%). ∆PP, ∆VmaxAo, ∆SVC, and ∆IVC could be measured in 78.5%, 78.0%, 99.6%, and 78.1% of cases, respectively. ∆SVC greater than or equal to 21%, ∆VmaxAo greater than or equal to 10%, and ∆IVC greater than or equal to 8% had a sensitivity of 61% (95% confidence interval, 57-66%), 79% (75-83%), and 55% (50-59%), respectively, and a specificity of 84% (81-87%), 64% (59-69%), and 70% (66-75%), respectively. The area under the receiver operating characteristic curve of ∆SVC was significantly greater than that of ∆IVC (P = 0.02) and ∆PP (P = 0.01). ∆VmaxAo had the best sensitivity and ∆SVC the best specificity in predicting fluid responsiveness. ∆SVC had a greater diagnostic accuracy than ∆IVC and ∆PP, but its measurement requires transesophageal echocardiography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call