Abstract

In bovine somatic cell nuclear transfer (NT), embryos are more likely to develop to full term when they are derived from fibroblasts at the G1 phase instead of cells at the G0/G1 phase. To better understand the reason for this difference, we examined morphological development in the early pregnancy of NT embryos using G1 phase cells (G1-NT embryos) and G0/G1 phase cells (G0/G1-NT embryos). Blastocysts derived from G1 and G0/G1-NT embryos were transferred to recipient heifers, and the conceptuses at day 50 of gestation were retrieved non-surgically using prostaglandin F 2α and oxytocin. In vitro-fertilized (IVF), parthenogenetic and artificially inseminated (AI) embryos were used as controls. The percentages of embryos that developed to the blastocyst stage did not differ between G1 and G0/G1-NT embryos. Pregnancy rates at day 30 of recipient heifers carrying G1-NT, G0/G1-NT, IVF, parthenogenetic and AI embryos were similar (57–100%). Two recipient heifers carrying parthenogenetic embryos returned to estrus between days 30 and 50 of gestation, whereas all other pregnancies remained viable. Most fetuses at day 50 of gestation of all experimental groups (83%) were recovered non-surgically by several PGF 2α and oxytocin treatments. Recovery rates of normal fetuses derived from G1-NT embryos (83%), IVF embryos (80%) and AI embryos (88%) were greater than those of G0/G1-NT embryos (33%) and parthenogenetic embryos (0%). Our results suggest that NT embryos reconstructed with cells at the G1 phase have a high developmental competence from the time of embryo transfer to day 50 of gestation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call