Abstract

Pharmacokinetic modeling of dynamic contrast-enhanced (DCE) MRI data provides measures of the extracellular-extravascular volume fraction (v(e) ) and the volume transfer constant (K(trans) ) in a given tissue. These parameter estimates may be biased, however, by confounding issues such as contrast agent and tissue water dynamics, or assumptions of vascularization and perfusion made by the commonly used model. In contrast to MRI, radiotracer imaging with SPECT is insensitive to water dynamics. A quantitative dual-isotope SPECT technique was developed to obtain an estimate of v(e) in a rat glioma model for comparison with the corresponding estimates obtained using DCE-MRI with a vascular input function and reference region model. Both DCE-MRI methods produced consistently larger estimates of v(e) in comparison to the SPECT estimates, and several experimental sources were postulated to contribute to these differences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.