Abstract

A rapid and sensitive assay is essential for reliable surveillance and diagnosis of canine astrovirus (CaAstV). In this study, two real-time reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays with high sensitivity, rapidity, and reliability were developed using fluorescence dye and FRET-based assimilating probes for real-time detection of CaAstV. These assays specifically amplified the ORF2 gene of CaAstV and did not amplify any sequences from canine enterovirus. The limit of detection (LOD) of both the probe-based and dye-based RT-LAMPs was 100 copies/μL. Fluorescence signals were generated within 30 min for the lowest concentration of a standard RNA sample, which was significantly faster than that achieved by real-time fluorescence quantitative PCR (qRT-PCR) assay. When clinical samples were tested, the positive and negative agreement of the dye-based RT-LAMP assay with qRT-PCR was 87.5% (14/16) and 93.55% (29/31), respectively. The positive and negative agreement of the probe-based RT-LAMP assay with qRT-PCR was 94.11% (16/17) and 96.55% (28/29), respectively. The RT-LAMP assays developed in this study showed strong potential for use as an on-site diagnostic assay for rapid, specific, and reliable detection of CaAstV in clinical samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call