Abstract
As the DT fusion reaction produces neutrons with energies significantly higher than in fission reactors, special fusion-relevant benchmark experiments are often performed using DT neutron generators. However, commonly used Monte Carlo particle transport codes such as MCNP or TRIPOLI cannot be directly used to analyze these experiments since they do not have the capabilities to model the production of DT neutrons. Three of the available approaches to model the DT neutron generator source are the MCUNED code, the ENEA-JSI DT source subroutine and the DDT code. The MCUNED code is an extension of the well-established and validated MCNPX Monte Carlo code. The ENEA-JSI source subroutine was originally prepared for the modelling of the FNG experiments using different versions of the MCNP code (−4, −5, −X) and was later extended to allow the modelling of both DT and DD neutron sources. The DDT code prepares the DT source definition file (SDEF card in MCNP) which can then be used in different versions of the MCNP code. In the paper the methods for the simulation of the DT neutron production used in the codes are briefly described and compared for the case of a simple accelerator-based DT neutron source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.