Abstract

BackgroundReducing COVID-19 transmission relies on controlling droplet and aerosol spread. Fluorescein staining reveals microscopic droplets.AimTo compare the droplet spread in non-laminar and laminar air flow operating theatres.MethodsA ‘cough-generator’ was fixed to a theatre trolley at 45°. Fluorescein-stained ‘secretions’ were projected on to a series of calibrated targets. These were photographed under UV light and ‘source detection’ software measured droplet splatter size and distance.FindingsThe smallest droplet detected was ∼120 μm and the largest ∼24,000 μm. An average of 25,862 spots was detected in the non-laminar theatre, compared with 11,430 in the laminar theatre (56% reduction). The laminar air flow mainly affected the smaller droplets (<1000 μm). The surface area covered with droplets was: 6% at 50 cm, 1% at 2 m, and 0.5% at 3 m in the non-laminar air flow; and 3%, 0.5%, and 0.2% in the laminar air flow, respectively.ConclusionAccurate mapping of droplet spread in clinical environments is possible using fluorescein staining and image analysis. The laminar air flow affected the smaller droplets but had limited effect on larger droplets in our ‘aerosol-generating procedure’ cough model. Our results indicate that the laminar air flow theatre requires similar post-surgery cleaning to the non-laminar, and staff should consider full personal protective equipment for medium- and high-risk patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.