Abstract

We performed a Monte Carlo study to compare dose distributions for a Fletcher–Suit–Delclos (FSD) ovoid used with 137Cs low-dose-rate (LDR) sources with those for a Fletcher–Williamson (FW) ovoid used with an 192Ir pulsed-dose-rate (PDR) source for intracavitary brachytherapy of cervical cancer. We recently reported on extensive validation of Monte Carlo MCNPX models of these ovoids using radiochromic film measurements. Here, we compared these models assuming identical loading of 10, 15 and 20 mgRaEq (72, 108 and 145 cGy cm2 h−1, respectively) in three dose mesh planes: one perpendicular to the ovoid long axis bisecting the ovoid, one parallel to and displaced 2 cm medially from the long axis of the ovoid, and a ‘rectal’ plane perpendicular to the long axis located 1 cm distal to the distal face of the ovoid cap. The FW ovoid delivered slightly higher doses (within 10%) over all loadings to regions away from the bladder and rectal shields when compared to the FSD ovoid. However, the FW ovoid delivered much higher doses (>50%) in regions near these shields. In the rectal plane, the FW ovoid delivered a slightly higher dose, but within the region directly behind the rectal shield, the FW ovoid delivered a dose ranging from +35% to –35% of the FSD dose distribution. We attribute these differences to intrinsic differences in source characteristics (radial dose function and anisotropy factors) and extrinsic factors such as the solid-angle effect between sources and shields and applicator design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.