Abstract

BackgroundDNA methylation is an epigenetic modification that plays an important role during mammalian development. Around birth in humans, the main site of red blood cell production moves from the fetal liver to the bone marrow. DNA methylation changes at the β-globin locus and a switch from fetal to adult hemoglobin production characterize this transition. Understanding this globin switch may improve the treatment of patients with sickle cell disease and β-thalassemia, two of the most common Mendelian diseases in the world. The goal of our study was to describe and compare the genome-wide patterns of DNA methylation in fetal and adult human erythroblasts.MethodsWe used the Illumina HumanMethylation 450 k BeadChip to measure DNA methylation at 402,819 CpGs in ex vivo-differentiated erythroblasts from 12 fetal liver and 12 bone marrow CD34+ donors.ResultsWe identified 5,937 differentially methylated CpGs that overlap with erythroid enhancers and binding sites for erythropoiesis-related transcription factors. Combining this information with genome-wide association study results, we show that erythroid enhancers define particularly promising genomic regions to identify new genetic variants associated with fetal hemoglobin (HbF) levels in humans. Many differentially methylated CpGs are located near genes with unanticipated roles in red blood cell differentiation and proliferation. For some of these new candidate genes, we confirm the correlation between DNA methylation and gene expression levels in red blood cell progenitors. We also provide evidence that DNA methylation and genetic variation at the β-globin locus independently control globin gene expression in adult erythroblasts.ConclusionsOur DNA methylome maps confirm the widespread dynamic changes in DNA methylation that occur during human erythropoiesis. These changes tend to happen near erythroid enhancers, further highlighting their importance in erythroid regulation and HbF production. Finally, DNA methylation may act independently of the transcription factor BCL11A to repress fetal hemoglobin production. This provides cues on strategies to more efficiently re-activate HbF production in sickle cell disease and β-thalassemia patients.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-014-0122-2) contains supplementary material, which is available to authorized users.

Highlights

  • DNA methylation is an epigenetic modification that plays an important role during mammalian development

  • The large epigenomic projects (e.g. ENCODE, Roadmap Epigenomic, Blueprint) do not profile DNA methylation in these erythroid cells. During this erythroid transition, which occurs around birth in humans, erythroblasts reduce the production of fetal hemoglobin (HbF) and increase the production of adult hemoglobin (HbA) through the transcriptionally regulated fetal-to-adult hemoglobin switch [10]

  • To determine if erythroblasts differentiated ex vivo maintain characteristics that are specific to their tissue of origin, we measured expression of genes involved in the fetal-to-adult hemoglobin switch and quantified hemoglobin production by capillary electrophoresis

Read more

Summary

Introduction

DNA methylation is an epigenetic modification that plays an important role during mammalian development. DNA methylation changes at the β-globin locus and a switch from fetal to adult hemoglobin production characterize this transition. The large epigenomic projects (e.g. ENCODE, Roadmap Epigenomic, Blueprint) do not profile DNA methylation in these erythroid cells During this erythroid transition, which occurs around birth in humans, erythroblasts reduce the production of fetal hemoglobin (HbF) and increase the production of adult hemoglobin (HbA) through the transcriptionally regulated fetal-to-adult hemoglobin switch [10]. This gene expression switch is accompanied by progressive DNA hypermethylation of the HBG2 promoter, which encodes the γ-globin subunit of HbF [11,12]. Ex vivo differentiation protocols exist to cultivate sufficient number of fetal and adult human erythroblasts to extend the characterization of DNA methylation to the rest of the genome [13]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.