Abstract

Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs have been identified widely in occupational and environmental pollution, such as diesel engine emissions and other combustion products. In most cases, hepatic biotransformation is involved in converting these chemicals to their carcinogenic metabolites. It has been demonstrated that isolated hepatocytes possess substantial amounts of the enzymes responsible for metabolizing xenobiotics and are therefore a convenient model for studying chemicals that require activation to exert their carcinogenic effects. In this study, rat hepatocytes were isolated by collagenase digestion and then exposed to benzo[a]pyrene (B) [a]P), benzo[a]anthracene (B[a]A), 1-nitropyrene (1-NP) and 1,6-dinitropyrene (1,6-DNP) at different doses and/or times so that DNA adducts levels, as measured with the 32P-postlabelling technique, could be compared. Each of the four compounds tested induced significant increases of total DNA adducts with clear dose-related responses. One or more individual adducts were identified as major adducts for each compound. Time-related increases of DNA adducts were also observed from 1 to 4 hr of incubation. Greater amounts of DNA adducts were induced by B[a]P or 1,6-DNP than by B[a]A or 1-NP, with potency being in the order 1,6-DNP>B[a]P> 1-NP⩾B[a]A. These results demonstrate that freshly isolated hepatocytes can be used as an effective in vitro system for the detection of DNA adducts using 32P-postlabelling, and have shown 1,6-DNP to be the most potent of the tested constituents of diesel emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.