Abstract
Although microbes are crucial in ecological cycling in forest soil, the response of the network structure and ecological functions of these microorganisms to soil heterogeneity remains elusive. Here, we analyzed the composition and co-occurrence network patterns of microorganisms in heterogeneous soil areas and evaluated their potential ecological functions, taking the scenic area (SA) and nature reserve (NR) of Wuyishan National Park as examples. Our results showed that the soil properties of SA and NR could almost be clustered separately, and soil heterogeneity between them has been found. Prokaryotic communities in both areas were also divided and showed higher similarities individually than those of eukaryotes. The prokaryotic community composition in both areas was mainly affected by pH and ammonia, while the eukaryotic community composition was mainly affected by total carbon and the carbon to nitrogen ratio. Both the microbial network and ecological function network in SA were more complex than those of NR, while those of NR were more stable than those of SA. The keystone taxa of pro- and eukaryotes with important ecological functions were enriched in SA and NR, respectively. Moreover, significant discrepancies between SA and NR were found in the prokaryotic functions related to nitrogen cycling, sulfur cycling, and compound degradation. Our study illuminated that the soil heterogeneity in subtropical areas changed microbial community diversity, interaction patterns, and keystone taxa composition, and might further affect their ecological functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.