Abstract

Clinical isolates of Borrelia burgdorferi sensu stricto have been categorized into disseminated and nondisseminated groups based on distinct ribosomal spacer restriction fragment length polymorphism genotypes (RSTs). In order to determine whether transmission by tick bite would alter the dissemination dynamics and disease produced by distinct genotypes, disseminated isolates (RST1), nondisseminated isolates (RST3), and a standard laboratory strain (B-31) were established in a murine cycle utilizing infections transmitted by ticks. B-31 spirochetes circulated in the blood of inbred C3H/HeJ mice longer than in the blood of outbred mice. The majority of C3H mice exposed to RST1-infected ticks contained cultivable spirochetes in their blood for up to 17 days; in contrast, mice exposed to RST3 isolates demonstrated a precipitous decline in infection after day 7 postexposure. A quantitative PCR (q-PCR) assay demonstrated that the densities of spirochetes in blood were similar for the RST1 and RST3 isolates, except during the 2nd week postexposure, when the RST1 isolates displayed a markedly higher density in blood. Spirochete load in the heart and bladder of infected mice was measured by q-PCR at 8 weeks postexposure; the numbers of spirochetes in these tissues were similar for mice infected with either disseminated or nondisseminated strains. Similarly, histopathology samples of heart, bladder, and joint tissue obtained at 8 weeks postexposure did not reveal greater pathology in mice infected with the disseminated isolates. We conclude that although the spirochetemia induced by tick-transmitted disseminated isolates was more intense and of longer duration than that induced by nondisseminated isolates, the resultant pathologies produced by these strains were ultimately similar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call