Abstract

Membrane fouling is the Achilles' heel of the reverse osmosis (RO) system for high-quality reclaimed water production. Previous studies have found that after the significant selection effect of traditional disinfection, the remaining disinfection-residual bacteria (DRB) may possess more severe biofouling potentials. To provide more constructive advice for the prevention of biofouling, we compared the RO membrane fouling characteristics of DRB after using five commonly used disinfection methods (NaClO, NH2Cl, ClO2, UV, and O3) and two novel disinfection methods (K2FeO4 and the flow-through electrode system (FES)). Compared with the control group (undisinfected, 21.1 % flux drop), the UV-DRB biofilm aggravated biofouling of the RO membrane (23.4 % flux drop), while the FES, K2FeO4, and NH2Cl treatments showed less severe biofouling, with final flux drops of 6.9 %, 8.1 %, and 8.1 %, respectively. Adenosine triphosphate (ATP) was found to be a capable indicator for predicting the biofouling potential of DRB. Systematic analysis showed that the thickness and density of the DRB biofilms were most closely related to the different fouling degree of RO membranes. Moreover, the relative abundance of bacteria with higher extracellular polymeric substance (EPS) secretion levels, such as Pseudomonas and Sphingomonas, was found closely related with the biofouling degree of RO membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.