Abstract
BackgroundCampylobacter jejuni is a zoonotic pathogen that infects the human gut through the food chain mainly by consumption of undercooked chicken meat, raw chicken cross-contaminated ready-to-eat food or by raw milk. In the last decades, C. jejuni has increasingly become the most common bacterial cause for food-born infections in high income countries, costing public health systems billions of euros each year. Currently, different whole genome sequencing techniques such as short-read bridge amplification and long-read single molecule real-time sequencing techniques are applied for in-depth analysis of bacterial species, in particular, Illumina MiSeq, PacBio and MinION.ResultsIn this study, we analyzed a recently isolated C. jejuni strain from chicken meat by short- and long-read data from Illumina, PacBio and MinION sequencing technologies. For comparability, this strain is used in the German PAC-CAMPY research consortium in several studies, including phenotypic analysis of biofilm formation, natural transformation and in vivo colonization models. The complete assembled genome sequence most likely consists of a chromosome of 1,645,980 bp covering 1665 coding sequences as well as a plasmid sequence with 41,772 bp that encodes for 46 genes. Multilocus sequence typing revealed that the strain belongs to the clonal complex CC-21 (ST-44) which is known to be involved in C. jejuni human infections, including outbreaks. Furthermore, we discovered resistance determinants and a point mutation in the DNA gyrase (gyrA) that render the bacterium resistant against ampicillin, tetracycline and (fluoro-)quinolones.ConclusionThe comparison of Illumina MiSeq, PacBio and MinION sequencing and analyses with different assembly tools enabled us to reconstruct a complete chromosome as well as a circular plasmid sequence of the C. jejuni strain BfR-CA-14430. Illumina short-read sequencing in combination with either PacBio or MinION can substantially improve the quality of the complete chromosome and epichromosomal elements on the level of mismatches and insertions/deletions, depending on the assembly program used.
Highlights
Campylobacter jejuni is a zoonotic pathogen that infects the human gut through the food chain mainly by consumption of undercooked chicken meat, raw chicken cross-contaminated ready-to-eat food or by raw milk
Campylobacter jejuni is a Gram-negative bacterium that colonizes a wide range of hosts as part of the natural gut microbiota [1]
Bacterial isolation and initial characterization BfR-CA-14430 was isolated in the framework of the zoonosis monitoring program 2016 from chicken meat according to ISO 10272-1:2006
Summary
Campylobacter jejuni is a zoonotic pathogen that infects the human gut through the food chain mainly by consumption of undercooked chicken meat, raw chicken cross-contaminated ready-to-eat food or by raw milk. C. jejuni has increasingly become the most common bacterial cause for food-born infections in high income countries, costing public health systems billions of euros each year. To. Epping et al Gut Pathog (2019) 11:59 date, campylobacteriosis is the most common bacterial cause of food-born infections in high income countries, with costs amounting to 2.4 billion euros each year for the public health system and lost productivity in the European Union [3]. We gained a deeper insight into whole genome sequencing and the impact of various assembly programs, including different hybrid assemblers on various combinations of long and short read sequencing technologies. This revealed a complete chromosomal sequence as well as one closed plasmid sequence
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.