Abstract

Electrical Impedance Tomography (EIT) is an imaging technique that attempts to reconstruct the conductivity distribution inside an object from electrical currents and potentials applied and measured at its surface. The EIT reconstruction problem is approached as an optimization problem. This optimization problem can be solved using Simulated Annealing (SA), but at a high computational cost. To reduce the computational load, it is possible to use an incomplete evaluation of the objective function. Two objective functions are analyzed and compared: Euclidian distance and least square minimization. The Euclidian distance minimization showed to present an outside-in behavior, determining the impedance of the external elements first, similar to a layer striping algorithm. It also presents the impact of using GPU for parallelizing matrixvector multiplication. Results with experimental data are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.