Abstract
A comparison of three different subset selection methods in combination with a new learning algorithm for nonlinear system identification with local models of higher polynomial degree is presented in this paper. Usually the local models are linearly parameterized and those parameters are typically estimated by some least squares approach. For the utilization of higher degree polynomials this procedure is no longer feasible since the amount of parameters grows rapidly with the number of physical inputs and the polynomial degree. Thus a new learning strategy with the aid of subset selection methods is developed to estimate only the most significant parameters. A forward selection method with orthogonal least squares, a stepwise regression and a least angle regression method are used for training different neural networks. A comparison of the trained networks shows the benefits of each subset selection method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.