Abstract

The Smagorinsky subgrid-scale model, a dynamic subgrid-scale model, and a stimulated subgrid-scale model have been used in a large eddy simulation (LES) program to compute airflow in a room. A fast Fourier transformation (FFT) method and a conventional iteration method were used in solving the Poisson equation. The predicted distributions of indoor air velocity, temperature, and contaminant concentrations show that the three subgrid-scale models can produce acceptable results for indoor environment design. The dynamic and stimulated models performed slightly better than the Smagorinsky model. The use of FFT can significantly reduce the computing time. LES is a tool of the next generation of indoor air distribution design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.