Abstract

Fluoroquinolones are synthetic antibiotics which are frequently used in veterinary medicine e.g. for the treatment of poultry. Their specific importance is based on the fact that they are regarded as antibiotics of last resort because of their broad spectrum of action against Gram-negative and -positive bacteria. Here, a new and sensitive method for the simultaneous determination of four fluoroquinolones (marbofloxacin, ciprofloxacin, enrofloxacin and difloxacin) in chicken plasma by LC-MS/MS was developed. Solid-phase extraction was chosen for sample preparation because a selective sample clean-up is combined with an effective extraction. Various solid-phase extraction materials including polymer-based reversed-phase, silica-based reversed-phase and mixed-mode sorbents were compared. Selection criteria were analyte recovery, sample extract purity and economical aspects (analysis time and elution solvent volume). Best recoveries and minimized elution solvent volumes were achieved using polymeric reversed-phase cartridges. However, post-column infusion experiments revealed that the analysis is influenced by co-eluting matrix components. Hence, a combination of a mixed-mode anion-exchange cartridge and a mixed-mode cation-exchange cartridge was used as final extraction method. This method yield slightly lower analyte recoveries compared to polymeric-reversed-phase cartridges but exhibit no matrix effects. Recoveries of spiked chicken plasma ranged from 61.9% to 84.8% with an inter-day precision of generally less than 12%. LODs are between 0.03 and 0.05μg/L; LOQs are between 0.08 and 0.16μg/L. Maximum plasma concentrations of chickens medicated with an enrofloxacin dosage of 3mg/kg bodyweight were 38.9μg/L for enrofloxacin and 3.3μg/L for its main metabolite ciprofloxacin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.