Abstract

ABSTRACTSoil dielectric model is an essential part of the microwave soil moisture retrieval process. This study compared the performance of four widely used dielectric models, the Wang-Schmugge model (WS), Dobson model, generalized refractive mixing dielectric model (GRMDM), and multi-relaxation generalized refractive mixing dielectric model (MRGRMDM), and investigated the effects of the uncertainties of each model on soil moisture retrievals. Furthermore, the simulated soil dielectric constants were evaluated by measured dielectric data at the P/L/C/X bands. The results showed that the uncertainties induced in soil moisture retrievals by an alternative dielectric model exceeded 0.09 m3 m−3 in the worst case. The Dobson model is sensitive to the sand content. WS, GRMDM, and MRGRMDM model are sensitive to the clay content. The measured dielectric data further verified that the applicability of each dielectric model depends on the soil texture type and soil moisture condition. Compared with Dobson model, WS showed better performance at dry soil. GRMDM and MRGRMDM provided better results under lower clay content soil. Especially, MRGRMDM has better simulation accuracy than GRMDM in the low-frequency range (< 1 GHz).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call