Abstract

Mechanical blade dicing is a state-of-the-art technique for the chip separation of SiC devices. Due to the hardness of SiC this technique suffers from low feed rate and high wear of the diamond coated dicing blade, resulting in the risk of uncontrolled tool breakage during the dicing process. With the upcoming transition to 150 mm diameter of SiC wafers this technique will most probably reach its limit. For dicing SiC wafers of those diameters on a productive scale three alternative dicing technologies are considered in this paper: ablation laser dicing, Stealth Dicing and Thermal Laser Separation. All these methods are based on laser processing. The benefits of these technologies are discussed in detail and compared to the classical mechanical diamond blade dicing, including a brief summary of first experimental results on each of the three laser dicing technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.