Abstract
Massive gas injection (MGI) is a traditional plasma disruption mitigation method. This method directly injected massive gas into the pre-disruption plasma and had been developed on the Experimental Advanced Superconducting Tokamak (EAST). Different noble gas injection experiments, including He, Ne, and Ar, were performed to compare the mitigation effect of plasma disruption by evaluating the key parameters such as flight time, pre-thermal quench (pre-TQ), and current quench (CQ). The flight time was shorter for low atomic number (Z) gas, and the decrease in flight time by increasing the amount of gas was insignificant. However, both pre-TQ and CQ durations decreased considerably with the increase in gas injection amount. The effect of atomic mass on pre-TQ and CQ durations showed the opposite trend. The observed trend could help in controlling CQ duration in a reasonable area. Moreover, the analysis of radiation distribution with different impurity injections indicated that low Z impurity could reduce the asymmetry of radiation, which is valuable in mitigating plasma disruption. These results provided essential data support for plasma disruption mitigation on EAST and future fusion devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.