Abstract
The global outbreak of COVID-19 has resulted in a surge in patients in hospitals and intensive care units. This unprecedented demand for medical resources has severely burdened healthcare systems. Chest X-Ray (CXR) images can be used by hospitals and small clinics to predict COVID-19 severity to maximize efficiency and allot medical resources to patients with severe COVID-19. This research compares the accuracies of four convolutional neural network models in predicting COVID-19 severity using chest X-Rays images. The CNN models include VGG-16, ResNet 50, Xception, and a custom CNN model. Through the comparison, VGG-16 had the highest COVID-19 severity prediction accuracy of all four models, with 95.56% testing accuracy and 88.33% validation accuracy. Using a machine learning method, disease progression can be tracked more accurately and help prioritize patients to ensure effective and timely treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.