Abstract

Limbal stem cells (LSCs) are the stem cell reservoir for corneal epithelium. The protocol to isolate LSCs from human cornea has been examined and optimized. However, the isolation protocol has not been optimized for mouse cornea, which is crucial for the downstream cell analysis. Here we compared four different isolation methods evolved from the previous reports to obtain mouse limbal epithelial cells which are heterogeneous and contain LSCs in a single-cell suspension: (1) the dissected limbal rim was cut into pieces and digested by 10-cycle incubation in trypsin; (2) after the removal of corneal epithelium by a rotating bur, the remaining eyeball was incubated in dispase at 4 °C for overnight to obtain limbal epithelial sheet, followed by trypsin digestion into a single-cell suspension; (3) same as method 2 except that the incubation was in dispase at 37 °C for 2h and an additional collagenase incubation at 37 °C for 20 min; (4) same as method 3 except that the corneal epithelium was punctured by a 1.5 mm trephine instead of being removed by a rotating bur. Method 1 showed the lowest cell yield, the lowest percentage of single cells, and the lowest number of limbal epithelial stem/progenitor cells in the harvested cells among the four methods, thus not a recommended protocol. Method 2, 3, and 4 isolated a comparable number of K14+ and p63α-bright stem/progenitor cells per eye. The remaining eye globe after cell collection in the three methods showed a complete removal of limbal epithelium albeit different extent of corneal and limbal stromal digestion. Among the three methods, method 2 showed a higher cell viability than method 4; method 3 yielded the lowest cell number; method 4 led to the highest percentage of single cells in cell suspension. Results suggest that method 2, 3, and 4 are preferred methods to isolate heterogeneous-LSCs from mouse corneas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.