Abstract

AbstractIn arid and semi-arid regions, documentary data of past floods remain justly rare and highly fragmentary in most cases. Existence of many effective parameters on maximum flood discharge and the complex relationships between them is an important challenge in the reconstruction of these data and hence, it limited the application of traditional methods. In this paper, an alternative approach (i.e. artificial intelligence methods) has been evaluated to determine the interactive relations of them. To this end, flow data was collected from 29 gauging stations in the central part of Iran for the period 1965 to 2007. Following quality and homogeneity controls of the data, reconstruction of instantaneous peak flow time series were made using maximum daily data by four different methods; regression method (REG), artificial neural network (ANN), genetic algorithm (GA) and adaptive neuro-fuzzy inference system (ANFIS). Results showed that in all studied stations, ANFIS reconstructs instantaneous peak flow val...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.