Abstract

To study the difference in dielectric properties (relative permittivity and electrical conductivity) between normal human esophageal tissues and esophageal cancer tissues resected in esophageal cancer surgery for rapid identification of esophageal cancer during surgery. An open- end coaxial probe in the frequency range of 50 MHz to 4 GHz was used for dielectric measurement of the normal tissues and tumor tissues immediately after resection in 51 esophageal cancer cases. The difference in dielectric characteristics of the tissues was analyzed in the full frequency range, and the measurement data at 6 specific frequencies (64, 128, 298, 433, 915, and 2450 MHz) were analyzed statistically. The Cole-Cole model was used for data fitting in the entire frequency band and the measured values were compared with reported values. In the frequency range of 50 MHz- 4 GHz, the dielectric measurement values of esophageal cancer tissues were significantly higher than those of normal esophageal tissues. At the 6 specific frequencies, the dielectric properties also differed significantly between normal esophageal tissues and esophageal cancer tissues (P < 0.01). The Cole-Cole model achieved a good fitting result of the measured data. The measured values in this study were lower than the reported values. There are significant differences in the dielectric properties between normal esophageal tissue and tumor tissue, which may provide a new theoretical basis for rapid identification of esophageal cancer during surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.