Abstract

BackgroundPhase analysis of gated myocardial perfusion single-photon emission computed tomography (SPECT) for assessment of left ventricular (LV) dyssynchrony was investigated using the following dedicated software packages: Corridor4DM (4DM), cardioREPO (cREPO), Emory Cardiac Toolbox (ECTb), and quantitative gated SPECT (QGS). The purpose of this study was to evaluate the normal values of 95% histogram bandwidth, phase standard deviation (SD), and entropy and to compare the diagnostic performance of the four software packages. A total of 122 patients with normal myocardial perfusion and cardiac function (58.9 ± 12.3 years, 60 women, ejection fraction (EF) 74.3 ± 5.7%, and end-diastolic volume (EDV) 83.5 ± 3.6 mL) and 34 patients with suspected LV dyssynchrony (64.1 ± 12.2 years, 9 women, EF 52.0 ± 18.0%, and EDV 145.0 ± 6.8 mL) who underwent Tc-99m methoxy-isobutyl-isonitrile/tetrofosmin gated SPECT were retrospectively evaluated. Dyssynchrony indices of the 95% histogram bandwidth, phase SD, and entropy were computed with the four software programs. Diagnostic performance of LV phase dyssynchrony assessments was determined by receiver operator characteristic (ROC) analysis. The area under the ROC curve (AUC) was used to compare the software programs. The optimal cutoff point was determined by ROC curve based on the Youden index.ResultsThe average of normal bandwidth significantly differed among the four software programs except in the comparison of 4DM and ECTb. Moreover, the normal phase SD significantly differed among the four software programs except in the comparison of cREPO and ECTb. The software programs showed high correlation levels for bandwidth, phase SD, and entropy (r ≥ 0.73, p < 0.001). ROC AUCs of bandwidth, phase SD, and entropy were ≥0.850, ≥0.858, and ≥0.900, respectively. Moreover, the ROC AUCs of bandwidth, phase SD, and entropy did not significantly differ among the four software programs. Optimal cutoff points for phase parameters were 24°–42° for bandwidth, 8.6°–15.3° for phase SD, and 31–48% for entropy.ConclusionsAlthough the optimal cutoff value for determining LV phase dyssynchrony by ROC analysis varied depending on the use of the different software programs, all software programs can be used reliably for phase dyssynchrony analysis.

Highlights

  • Phase analysis of gated myocardial perfusion single-photon emission computed tomography (SPECT) for assessment of left ventricular (LV) dyssynchrony was investigated using the following dedicated software packages: Corridor4DM (4DM), cardioREPO, Emory Cardiac QGS quantitative gated SPECT (Toolbox) (ECTb), and quantitative gated SPECT (QGS)

  • When we calculated left ventricular ejection fraction (LVEF) values in 15 patients with heart failure (HF) and 19 patients with echocardiographic abnormality, mean EF values were 38 ± 14% for those with HF and 64 ± 11% for those with electrocardiographic abnormality (p < 0.0001). This result showed that the patients with suspected LV dyssynchrony had slight to severe cardiac function abnormalities

  • The mean bandwidth significantly differed among the four software programs (QGS, 20.5° ± 7.8°; Emory Cardiac Toolbox (ECTb), 28.1° ± 9.1°; 4DM, 29.6° ± 9.3°; and cREPO, 38.4° ± 10.4°; p < 0.0001 for all combinations except the combination of ECTb and 4DM (p = n. s.))

Read more

Summary

Introduction

Phase analysis of gated myocardial perfusion single-photon emission computed tomography (SPECT) for assessment of left ventricular (LV) dyssynchrony was investigated using the following dedicated software packages: Corridor4DM (4DM), cardioREPO (cREPO), Emory Cardiac Toolbox (ECTb), and quantitative gated SPECT (QGS). Quantitative assessment of LV mechanical dyssynchrony by GMPS can be performed using commercially available software programs, including Emory Cardiac Toolbox (ECTb; Syntermed, Atlanta, GA, USA) [11], quantitative gated SPECT (QGS; Cedars-Sinai Medical Center, Los Angeles, CA, USA) [12], and Corridor4DM (4DM; INVIA Medical Imaging Solutions, Ann Arbor, MI, USA) [13] as well as cardioREPO (cREPO; FUJIFILM RI Pharma, Tokyo, Japan, developed in collaboration with EXINI Diagnosis, Lund, Sweden, and Kanazawa University, Kanazawa, Japan) [14,15,16,17,18]. The phase histogram and its distribution of the whole and regional LV can be automatically analyzed with these software programs, and these data can be utilized to diagnose LV dyssynchrony

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call