Abstract

The magnitude of sleep-related gonadotropin rise required to activate pubertal gonadal function is not established. Our objective was to determine the normal relationship between sleep-related pubertal hormone levels and pituitary-testicular responsiveness to a GnRH agonist (GnRHag) test across the pubertal transition. DESIGN/SETTING AND PARTICIPANTS: We conducted a prospective study in a General Clinical Research Center with healthy 9- to 15-yr-old volunteer boys. INTERVENTIONS included overnight blood sampling followed by leuprolide acetate injection (10 μg/kg). LH, FSH, and testosterone levels were evaluated. LH levels during sleep and post-GnRHag rose steadily during the late prepubertal years. Sleep peak LH correlated highly with the LH response to GnRHag across groups (r = 0.913). A sleep peak LH level of at least 3.7 U/liter predicted pubertal testicular activation with 100% accuracy. LH of at least 14.8 and at least 19.0 U/liter 4 h after GnRHag, respectively, predicted puberty with 100% sensitivity/94% specificity and 100% specificity/94% sensitivity. Overweight pubertal boys had transiently prolonged responses to GnRHag. FSH rose during both waking and sleeping hours during the prepubertal years, and all pubertal boys had an FSH level of at least 0.9 U/liter awake and at least 1.2 U/liter asleep. Sleep LH was more closely related than FSH to testicular size. These data suggest that a critical LH level during sleep (≥3.7 U/liter) heralds the onset of pubertal virilization and that this level is predictable by LH of at least 14.8-19 U/liter 4 h after GnRHag. These data also suggest that LH stimulation of testicular androgen production plays a role in stimulating testicular tubule growth once a critical level of FSH is achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call