Abstract
We compare the behavior of the finite-temperature Hartree-Fock model with that of thermal density functional theory using both ground-state and temperature-dependent approximate exchange functionals. The test system is bcc Li in the temperature-density regime of warm dense matter (WDM). In this exchange-only case, there are significant qualitative differences in results from the three approaches. Those differences may be important for Born-Oppenheimer molecular dynamics studies of WDM with ground-state approximate density functionals and thermal occupancies. Such calculations require reliable regularized potentials over a demanding range of temperatures and densities. By comparison of pseudopotential and all-electron results at T=0 K for small Li clusters of local bcc symmetry and bond lengths equivalent to high density bulk Li, we determine the density ranges for which standard projector augmented wave (PAW) and norm-conserving pseudopotentials are reliable. Then, we construct and use all-electron PAW data sets with a small cutoff radius that are valid for lithium densities up to at least 80 g/cm{3}.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.