Abstract

The lifetime and reliability of a photocathode during operation are always raised problems and the photocathode performance depends on the vacuum condition. With the purpose of investigating the stability and reliability of a GaAs-based photocathode in a harsher vacuum environment, reflection-mode exponential-doped GaAs and AlGaAs photocathodes are metalorganic vapor-phase epitaxial grown and then (Cs, O) activated inside an unbaked vacuum chamber. The degraded photocurrents are compared after activation and recaesiations between GaAs and AlGaAs photocathdoes under illumination with an equal initial photocurrent and an equal optical flux, respectively. It is found that the performance on degradation and recaesiations between GaAs and AlGaAs photocathodes are different. In the unbaked vacuum system, the stability of an AlGaAs photocathode after (Cs, O) activation is always better than that of a GaAs photocathode. After multiple recaesiations, the photocurrent decay curves of the AlGaAs photocathode are nearly coincident, which means a nearly constant operational lifetime. Moreover, operational lifetime of an AlGaAs photocathode is longer than that of a GaAs photocathode, which further illuminates that AlGaAs photocathodes are superior to GaAs photocathodes in stability and repeatability under markedly harsher vacuum conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call