Abstract

BackgroundObtaining medical data using wearable sensors is a potential replacement for in-hospital monitoring, but the lack of data for such sensors poses a challenge for development. One solution is using in-hospital recordings to boost performance via transfer learning. While there are many possible transfer learning algorithms, few have been tested in the domain of EEG-based sleep staging. Furthermore, there are few ways for determining which transfer learning method will work best besides exhaustive testing. Measures of transferability do exist, but are typically used for selection of pre-trained models rather than algorithms and few have been tested on medical signals. We tested several supervised transfer learning algorithms on a sleep staging task using a single channel of EEG (AF7-Fpz) captured from an in-home commercial system.ResultsTwo neural networks—one bespoke and another state-of-art open-source architecture—were pre-trained on one of six source datasets comprising 11,561 subjects undergoing clinical polysomnograms (PSGs), then re-trained on a target dataset of 75 full-night recordings from 24 subjects. Several transferability measures were then tested to determine which is most effective for assessing performance on unseen target data. Performance on the target dataset was improved using transfer learning, with re-training the head layers being the most effective in the majority of cases (up to 63.9% of cases). Transferability measures generally provided significant correlations with accuracy (up to r = -0.53).ConclusionRe-training the head layers provided the largest performance boost. Transferability measures are useful indicators of transfer learning effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.