Abstract

Abstract This article compares several promising data-driven methods for selecting the bandwidth of a kernel density estimator. The methods compared are least squares cross-validation, biased cross-validation, and a plug-in rule. The comparison is done by asymptotic rate of convergence to the optimum and a simulation study. It is seen that the plug-in bandwidth is usually most efficient when the underlying density is sufficiently smooth, but is less robust when there is not enough smoothness present. We believe the plug-in rule is the best of those currently available, but there is still room for improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.