Abstract
Novel metal and metal oxide-based nanocomplexes are being developed due to their superior properties compared with nanoparticles (NPs) based on single composition. In this study, we synthesized Ag-coated ZnO (Ag/ZnO) and Ag-doped ZnO (Ag@ZnO) NPs. The cytotoxicity and mechanisms associated with the synthesized NPs were investigated to understand the influence of Ag positions on biocompatibility of the NPs. After exposure to human umbilical vein endothelial cells (HUVECs), Ag/ZnO, Ag@ZnO, and ZnO NPs all significantly induced cytotoxicity, but the cytotoxic effects of Ag/ZnO and Ag@ZnO NPs were more modest in comparison with ZnO NPs. At cytotoxic concentrations, all NPs significantly induced intracellular Zn ions, which suggested a role of excessive Zn ions on cytotoxicity of NPs. All types of NPs significantly induced the expression of endoplasmic reticulum (ER) stress genes including DNA damage-inducible transcript 3 (DDIT3), X-box binding protein 1 (XBP-1), and ER to nucleus signaling 1 (ERN1), but Ag/ZnO and Ag@ZnO NPs were less effective to induce DDIT3 and XBP-1 expression compared with ZnO NPs. Not surprisingly, only ZnO NPs significantly induced the expression of caspase 3. Combined, the results from this study showed that Ag/ZnO and Ag@ZnO NPs were less cytotoxic and less potent to induce ER stress gene expression compared with ZnO NPs, but there were no significant differences between Ag/ZnO and Ag@ZnO NPs. Our results may provide novel understanding about the biocompatibility of Ag-ZnO nanocomplexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.