Abstract

Background: Nickel–titanium (NiTi) alloys created a revolution in the instrumentation of endodontics. However, they undergo unexpected fracture during the instrumentation of curved root canals due to cyclic fatigue. Hence, innumerable scientific and manufacturing researches are focused on fabricating NiTi rotary instruments with greater cutting efficiency and increased fatigue resistance. Aim: The aim of this study is to compare and evaluate the cyclic fatigue resistance of three different NiTi rotary file systems: Hyflex CM, Endostar E3, and Mani Silk. Materials and Methods: In this in-vitro study, 30 Hyflex CM (25/0.06), 30 Mani Silk (25/0.06), and 30 Endostar E3 (25/0.06) instruments were included. The static cyclic fatigue test was performed using a custom-made jig. The artificial canal was made of stainless-steel jig with an inner diameter of 1.5 mm, 45° angle of curvature, and radii of curvature of 5 mm. All the instruments were rotated according to the manufacturer's recommendations until failure occurred. The time taken to failure was recorded in seconds for each group using a digital chronometer. The data were analyzed statistically using the one-way analysis of variance, Post hoc test of Bonferroni was performed to identify pair-wise significance through SPSS 21.0 software (SPSS Inc, Chicago, IL, USA). The statistical significance was set at 5%. Results: Hyflex CM had the statistically highest fatigue resistance followed by Mani Silk and Endostar E3 (P < 0.05). Conclusion: Within the limitations of the present in vitro study, it was found that cyclic fatigue resistance of Hyflex CM files was higher than the cyclic fatigue resistance of Mani Silk and Endostar E3 files.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.